

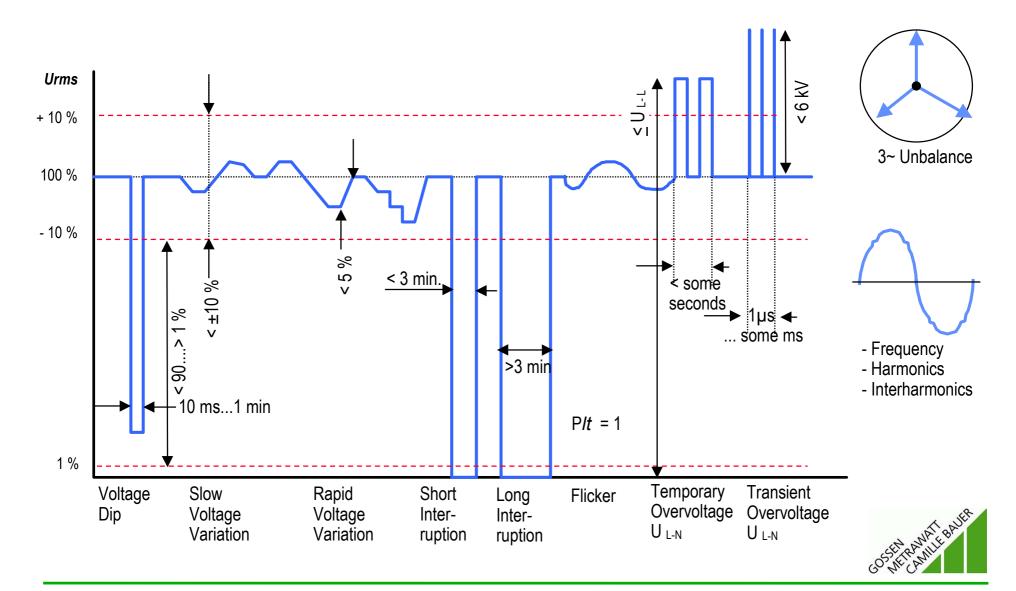

## **Reasons and Basis for Monitoring of Power Quality**

#### General

- Consciousness for Power Quality increases worldwide
- Privatisation of power utilities and de-regulation of energy market
- •Increasing number of non-linear consumers leads to rising voltage disturbances
- •Disturbances create power losses and malfunctions of appliances

## **New Regulations inside European Community**

- •Since 1995: Law for Product Liability
- Since 1996: Law for Electro-Magnetic Compatibility
- •Since 1998: Law for Economy of Energy


## The European "Mains Quality" standard EN 50160

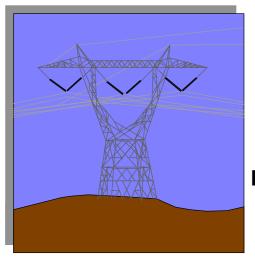
- •Voltage characteristics of electricity supplied by public distribution systems
- •Definition of parameters and quality criteria for medium and low voltage three-phase networks
- Description of random events like voltage dips and interruptions

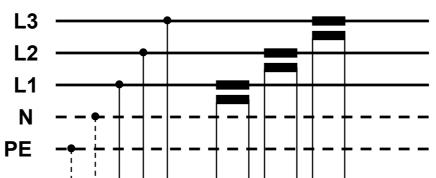
#### The EMC standards IEC 61000 / EN 61000

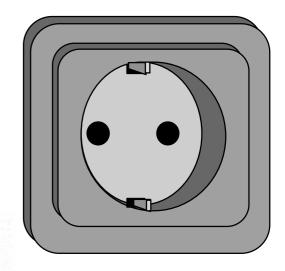
- •EN 61000-2 Compatibility levels
  - •2-2 Compatibility levels for low-frequency conducted disturbances
- •EN 61000-3 Limits, Emission Levels
  - •3-2 Limit values for harmonic current from instruments with <16A per phase
  - •3-3 Limitation of voltage fluctuations and flicker in low-voltage supply systems
- •EN 61000-4 Testing and measuring techniques

## Mains Voltage Parameters according to EN 50160




# **EN 50160 Quality Criteria at a Glance**


| Parameter                                     | Characteristic                                                         | Measuring cycle                                               | Campaign duration | Evaluation by MAVOLOG 10 |
|-----------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|--------------------------|
| Frequency                                     | 50 Hz ±0,5 Hz<br>during 95% of a week;<br>50 Hz +4% / -6% continuously | 10-sec mean value                                             | 1 week            | <b>✓</b>                 |
| Slow voltage variation                        | Un ±10 % during 95% of a week; Un +10/-15 % continuously               | 10-min mean value                                             | 1 week            | <b>✓</b>                 |
| Flicker                                       | Long-term flicker severity Plt < 1 during 95% of a week                | 2 h<br>(acc. EN 61000-4-15)                                   | 1 week            | ✓                        |
| Unbalance                                     | < 2 %<br>during 95% of a week                                          | 10-min mean value                                             | 1 week            | ✓                        |
| Harmonics<br>U <sub>H2</sub> U <sub>H40</sub> | < definite individual limits<br>and THD < 8%<br>during 95% of a week   | 10-min mean value<br>for each harmonic<br>(acc. EN 61000-4-7) | 1 week            | 1                        |
| Interharmonics                                | TBD                                                                    | TBD                                                           | 1 week            | _                        |
| Signalling voltages                           | <pre>&lt; frequency dependent limits during 99 % of a day</pre>        | 3-sec mean value                                              | 1 day             | _                        |
| Voltage dips                                  | number <10 1000 / year;<br>of which >50% with duration <1s             | 10-ms rms value<br>40%Un ≤U <sub>10ms</sub> ≤90%Un            | 1 year            | <b>√</b>                 |
| Short voltage interruptions                   | number <10 1000 / year;<br>of which >70% with duration <1s             | 10-ms rms value<br>U <sub>10ms</sub> ≤1%Un                    | 1 year            | ✓                        |
| Long voltage interruptions                    | number <10 50 / year with duration >3 min                              |                                                               | 1 year            | ✓                        |
| Temporary overvoltage (L-N)                   | number <10 1000 / year;<br>of which >70% with duration <1s             | 10-ms rms value<br>U <sub>10ms</sub> >110%Un                  | 1 year            | ✓                        |
| Transient overvoltage (L-N)                   | < 6 kV / μs ms                                                         |                                                               |                   | _                        |


Characteristics with definite thresholds for normal operating conditions

Characteristics with indicative thresholds









## **Events Logger**

- Over/Undervoltage
- Voltage Unbalance
- Voltage Dips & Swells
- Over/Underfrequency
- ◆Harmonics,THD, Flicker

## **MainsQuality Analyzer**

- EN 50 160 Limits
- NRS 048-2 (SouthAfrica)
   Dips Classification



with all modelswith S-model only◆ optional

#### Interval Recorder

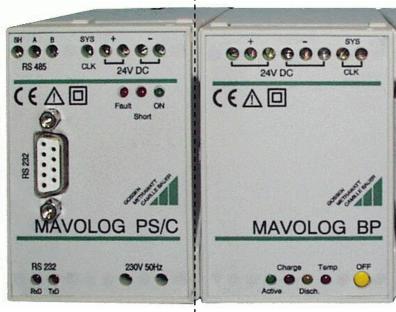
- Voltages
  - Frequency Hz
- FrequencyCurrents
- Power W, VA, var
- Energy Wh, varh
- ◆Harmonics,THD V, A, %
- ◆Flicker P<sub>st</sub>, P<sub>lt</sub>



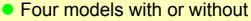
MAVOLOG 10 Page 5 Version 13.09.2001

#### **MAVOLOG PS/C**

Power Supply and Interface Converter

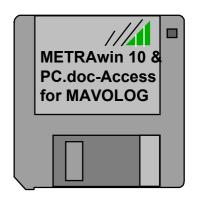

# MAVOLOG BP

**Battery Pack** 


#### **MAVOLOG 10**

CEA

**3-phase Mains Analyser** 




- For uninterrupted supply during AC fail
- 1 h hold-up time
- Integrated charge controller



- current measuring inputs
- single-line LC display
- flicker and harmonics analysis

# METRAwin 10 & PC.doc-Access for MAVOLOG



#### METRAwin 10

1/1/

MAVOLOG 10 S

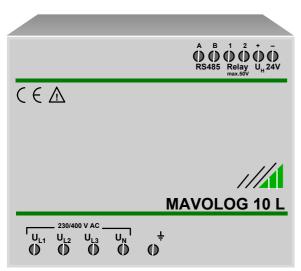
- device setup
- data readout
- data analysis

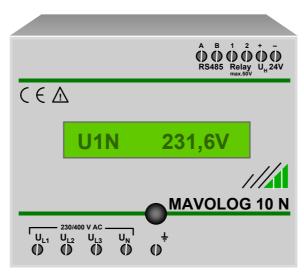
#### • PC.doc-Access

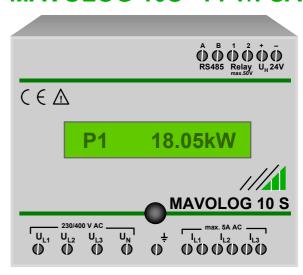
- database
- graph. presentation
- protocols



 Supply unit for five MAVOLOG 10 IN: 230 V AC OUT: 24 V DC


 Bidirectional RS232 to RS485 converter


MAVOLOG 10 Page 6 Version 13.09.2001


#### MAVOLOG 10L +FFT/FSA

#### MAVOLOG 10N +FFT/FSA

#### MAVOLOG 10S +FFT/FSA





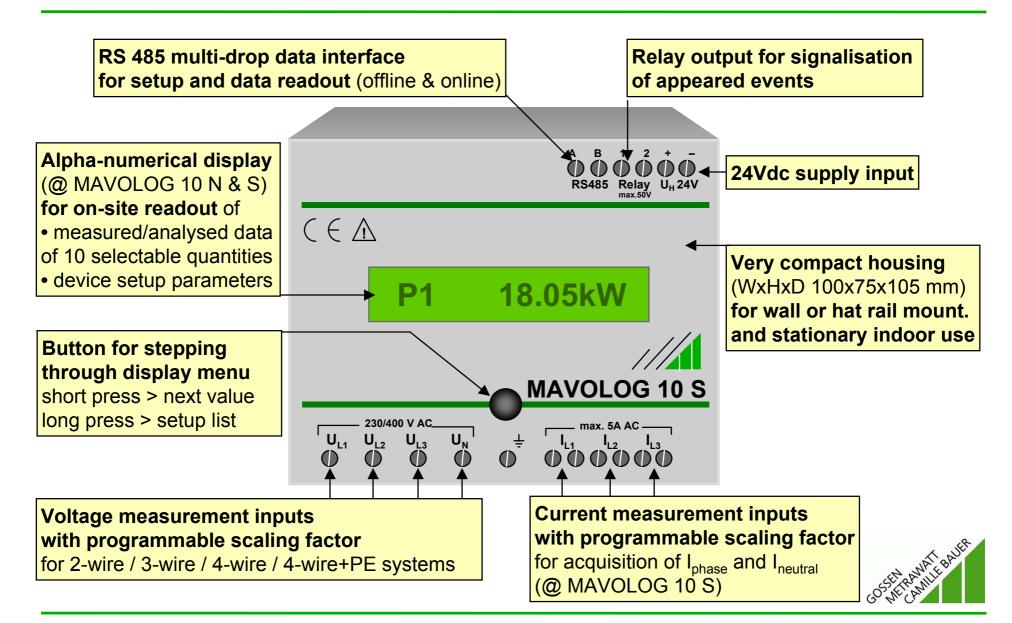


Simultanuous
Interval Recorder,
Events Logger,
Mains Quality Analyzer for

- Voltages U<sub>L-N</sub> & U<sub>N-PE</sub> or U<sub>L-L</sub>
- Frequency f

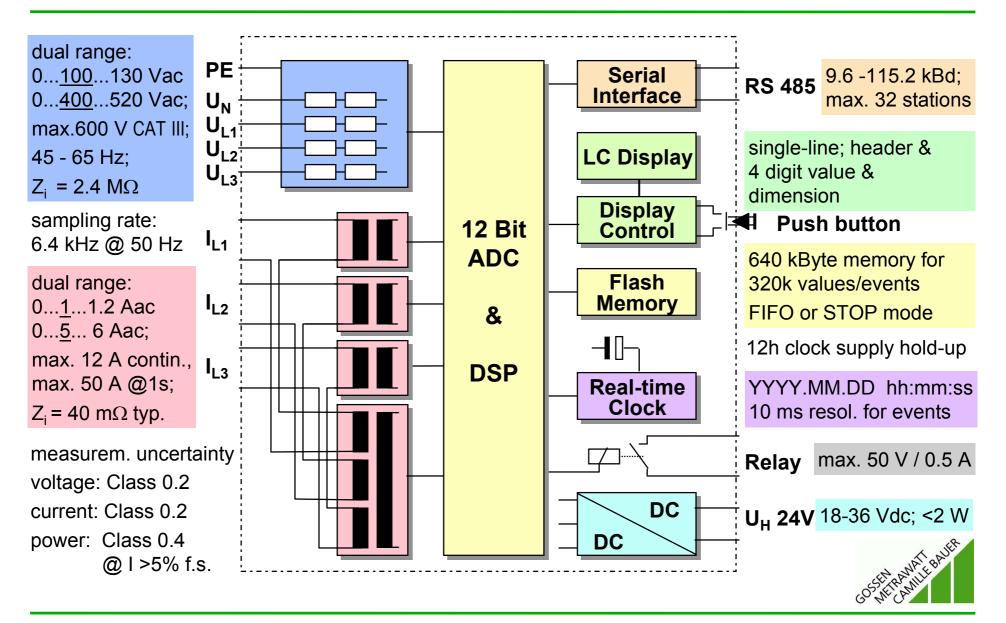
Extension vs. MAVOLOG 10L: Single-line LC display for on-site readout of

- measured or analysed values of 10 selectable quantities
- device setup parameters

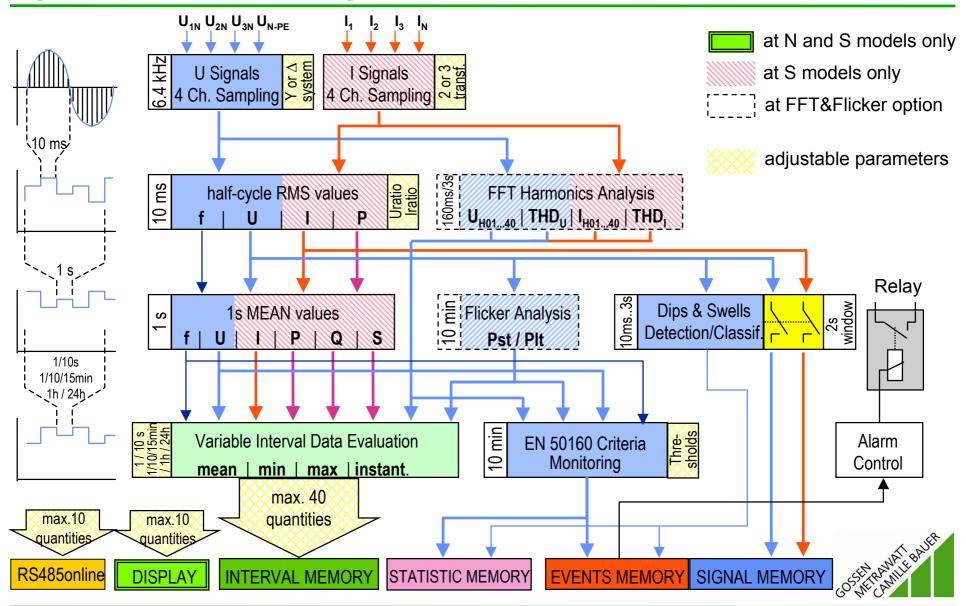

Extension vs. MAVOLOG 10N: Three current inputs

for measurement of

- Currents I<sub>L</sub> & I<sub>N</sub>,
- Power  $P_L$ ,  $P_{\Sigma}$ ,  $S_{\Sigma}$ ,  $Q_{\Sigma}$ ,
- Energy  $WP_{\Sigma}$ ,  $WQ_{\Sigma}$ ,  $WS_{\Sigma}$
- Harmonics Analysis U<sub>H 01 ... 40</sub>, (I<sub>H 01 ... 40</sub>) & THD (according to EN 61000-4-7)
- Flicker Analysis P<sub>st</sub>, P<sub>It</sub> (according to EN 61000-4-15)


MAVOLOG 10S also available without Harmonics (FFT) & Flicker (FSA) Analysis






MAVOLOG 10 Page 8 Version 13.09.2001

## **The Inner Values**



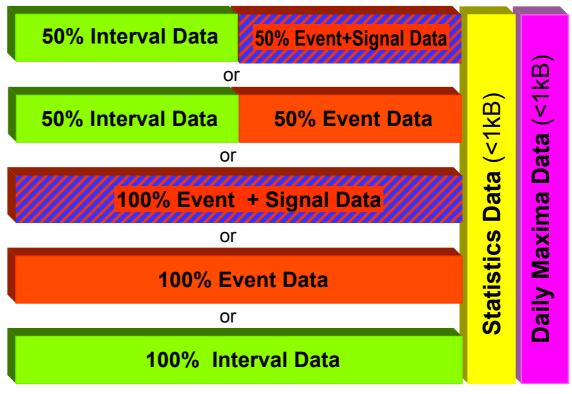
# **Signal and Data Processing**



Version 13.09.2001

### **Recording Capacity**

e.g. for 20 param's being recorded every 10 minutes over 55 days and >600 events including the voltage dip/swell signal


e.g. for 40 param's being recorded every 10 minutes over 27 days and >25,000 events

Over 500 events, each one including the 10ms-rms values of all three voltage signals over a 2 second time window

Over 50,000 events with Date, Time, Event type, Phase and Measured value

e.g. for 40 parameters being recorded every 15 minutes over 83 days





Non-volatile Flash Memory 640 kB (=320,000 values)

Interval and Events memory can be set for RING or STOP mode



MAVOLOG 10 Page 11 Version 13.09.2001

# MAVOLOG 10 L / N / S Interval Recorder Data (1)

| Measured Quantities                     | Header            | Unit | Mean | Min | Max | Inst. |
|-----------------------------------------|-------------------|------|------|-----|-----|-------|
| RMS values of phase-to-neutral voltages | U1N, U2N, U3N, UΣ | V    | •    | •   | •   |       |
| RMS values of phase-to-phase voltages   | U12, U23, U31     | V    | •    | •   | •   | •     |
| RMS value of neutral-to-earth voltage   | UNPE              | V    | •    | •   | •   | •     |
| Unbalance factor of voltages            | USYM              | %    | •    | •   | •   | •     |
| Frequency (of U <sub>L1</sub> )         | f                 | Hz   | •    | •   | •   | •     |

#### **Measured Quantities of FFT/FSA**

| 1 <sup>st</sup> to 40 <sup>th</sup> harmonic voltage per phase | U1H01 U1H40,<br>U2H01 U2H40,<br>U3H01 U3H40 | V | • | • |   |   |
|----------------------------------------------------------------|---------------------------------------------|---|---|---|---|---|
| Total harmonic distortion per phase voltage                    | U1THD,U2THD,U3THD                           | % | • | • | • |   |
| Short-term flicker level per phase voltage                     | U1Pst, U2Pst, U3Pst                         | - | • | • | • | • |
| Long-term flicker level per phase voltage                      | U1Plt, U2Plt, U3Plt                         | 1 |   | • | • |   |

Mean Mean value over interval period
 Min Minimum value during interval period
 Max Maximum value during interval period
 Instantaneous value at end of interval

**Available storage intervals** 

1 / 10 second(s)

1 / 5 / 10 / 15 minute(s)

1 / 24 hour(s)

available

available but non-sensical



# MAVOLOG 10 S Interval Recorder Data (2)

| Measured Quantities                    | Header         | Unit | Mean | Min | Max | Inst. |
|----------------------------------------|----------------|------|------|-----|-----|-------|
| RMS values of phase currents           | I1, I2, I3, IΣ | Α    | •    | •   |     |       |
| RMS values of neutral line current     | IN             | Α    | •    | •   | •   |       |
| Active power, per phase and collective | P1, P2, P3, PΣ | W    | •    | •   | •   |       |
| Reactive power, collective             | $Q\Sigma$      | var  | •    | •   | •   |       |
| Apparent power, collective             | SΣ             | VA   | •    | •   | •   | •     |
| Active energy, collective              | $WP\Sigma$     | Wh   | O    | O   | О   |       |
| Reactive energy, collective            | $WQ\Sigma$     | varh | О    | 0   | О   |       |
| Apparent energy, collective            | WSΣ            | VAh  | О    | 0   | О   |       |
| Power factor, collective               | $PF\Sigma$     | -    | •    | •   | •   |       |

### **Measured Quantities of FFT/FSA**

|                                             | I1H01 I1H40,<br>I2H01 I2H40,<br>I3H01 I3H40 | V |   |  | • |
|---------------------------------------------|---------------------------------------------|---|---|--|---|
| Total harmonic distortion per phase current | I1THD, I2THD, I3THD                         | % | • |  |   |



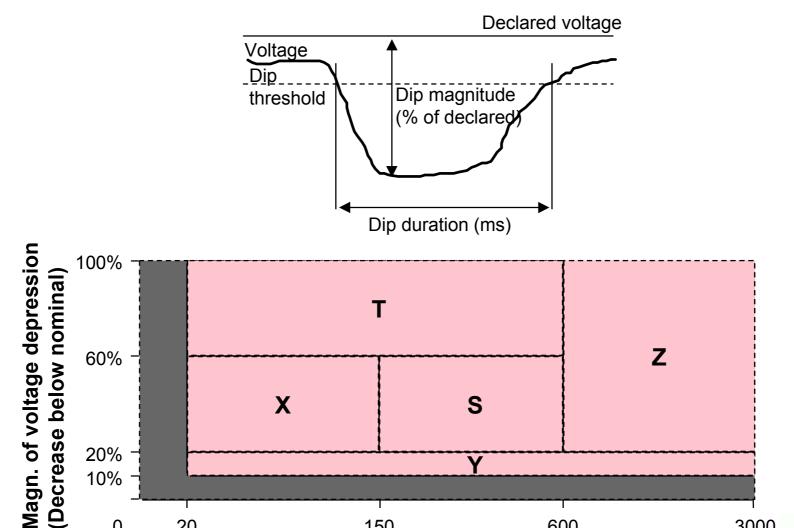
MAVOLOG 10 Page 13 Version 13.09.2001

**Event Trigger Criteria:** EN 50160 characteristics

**Event Thresholds:** • = user adjustable ▲ = fixed, according to EN 50160

Registered Event Informations: Date, Time, Type of Event, Phase, Measured Value(s)

- @ voltage dips with duration ≤ 3 s :
  - Date, Time, Dip Cat., Phase, Dip Magnitude [% of U<sub>nom</sub>], Dip Duration [x.xx s], {U/I Signal}
- @ voltage failure (=outage with duration > 3 s) :
  - Date, Time, "Voltage Failure", Phase, Dip Magn. of initial 3s [% of U<sub>nom</sub>], Duration [xx.xx s], {U/I Signal}
- @ voltage swells :
  - Date, Time, "Swell ", Phase, Swell Magnitude [% of U<sub>nom</sub>], Swell Duration [x.xx s], {U/I Signal}
- @ out-of-tolerance of the 10 minute mean value of U<sub>L</sub>:
  - Date, Time, "10-min.-Undervoltage", Phase, 10-min. mean value [% of U<sub>nom</sub>]
  - Date, Time, "10-min.-Overvoltage", Phase, 10-min. mean value [% of U<sub>nom</sub>]
- @ over-voltage of the 10 minute mean value of U<sub>N-PE</sub>:
  - Date, Time, "N-PE-Overvoltage", 10-min. mean value of U<sub>N-PE</sub> [% of U<sub>nom</sub>]
- @ out-of-tolerance of the 10 minute mean value of voltage unbalance :
  - Date, Time, "Unbalance", 10-min. mean value of U-unbalance [% of U<sub>nom</sub>]
- ▲ @ out-of-tolerance of the long term flicker severity P<sub>II</sub>:
  - Date, Time, "Flicker", Phase, Flicker Severity (x.xx)
- $\blacktriangle$  @ out-of-tolerance of the 10 minute mean value of THD<sub>U</sub> or voltage harmonic U<sub>H01</sub> ... U<sub>H40</sub>:
  - Date, Time, "UxTHD" or "UxHyy ", 10-min. mean value of THD/harmonic [% of U<sub>nom</sub>] (x = phase, yy = order of harmonic)


[] = unit; {} = if enabled, optionally stored in signal memory for a time window of 2 s

MAVOLOG 10 Page 14 Version 13.09.2001

20% 10%

0

3000

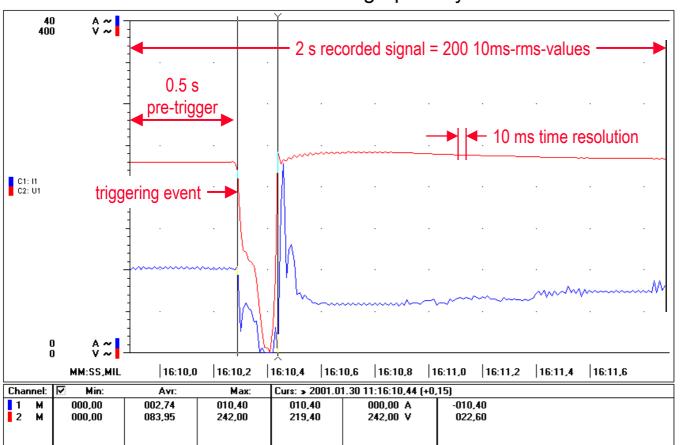


150

Dip duration (ms)

S

600


20

X

Signal recording trigger: voltage interruption, voltage dip, voltage swell

Recorded signal data: 200 10ms-rms values (50 before and 150 after trigger event) of voltage or voltage and current of all or of respective phase(s)

**Presentation in METRAwin 10** graphically



#### numerically

| Curs:       | C1: I1 | C2: U1 |
|-------------|--------|--------|
| 2001.01.30  | A AC   | VAC    |
| 11:16:10,44 |        |        |
|             | Амт:   | Амт:   |
| 16:10,300   | 002,60 | 149,59 |
| 16:10,310   | 005,29 | 124,20 |
| 16:10,320   | 006,09 | 121,79 |
| 16:10,330   | 005,40 | 111,70 |
| 16:10,340   | 005,20 | 109,79 |
| 16:10,350   | 003,79 | 104,79 |
| 16:10,360   | 003,89 | 00,880 |
| 16:10,370   | 00,000 | 051,60 |
| 16:10,380   | 000,59 | 027,10 |
| 16:10,390   | 00,000 | 007,40 |
| 16:10,400   | 00,000 | 006,50 |
| 16:10,410   | 00,000 | 00,000 |
| 16:10,420   | 00,000 | 033,29 |
| 16:10,430   | 003,10 | 092,79 |
| 16:10,440   | 00,000 | 242,00 |
| 16:10,450   | 017,69 | 227,90 |
| 16:10,460   | 022,80 | 232,90 |
| 16:10,470   | 009,09 | 232,19 |
| 16:10,480   | 012,40 | 236,19 |
| 16:10,490   | 013,09 | 233,80 |
| 16:10,500   | 011,00 | 238,50 |
| 16:10,510   | 007,09 | 235,80 |



MAVOLOG 10 Page 16 Version 13.09.2001

Incremental counters for statistical evaluation of events: How many times

How long

How many days with out of limits time > 5%

| Parameter / Event           | Thresholds                                                                                       | Counters      |               |             |
|-----------------------------|--------------------------------------------------------------------------------------------------|---------------|---------------|-------------|
|                             |                                                                                                  | No. of events | Time duration | >5% Days    |
| Monitoring time since Reset |                                                                                                  | -             | 1             | -           |
| Aux. supply interruption    |                                                                                                  | 1             | 1             | -           |
| Undervoltage                | Urms(10min) < adjustable limit                                                                   | -             | 1 per phase   | 1           |
| Overvoltage                 | Urms (10min) > adjustable limit                                                                  | -             | 1 per phase   | 1           |
| N-PE Overvoltage            | Urms (10min) > adjustable limit                                                                  | -             | 1             | 1           |
| Unbalance over limit        | U <sub>(10min)</sub> > adjustable limit                                                          | -             | 1             | 1           |
| Underfrequency              | f <sub>(10sec)</sub> < adjustable limit                                                          | -             | 1             | 1           |
| Overfrequency               | f <sub>(10sec)</sub> > adjustable limit                                                          | -             | 1             | 1           |
| Flicker over limit          | Pit > 1.00                                                                                       | -             | 1 per phase   | 1 per phase |
| THD over limit              | THD-U(10min) > 8%                                                                                | 1 per phase   | 1             | -           |
| Harmonics 2-40 over limit   | UHn(10min) > EN50160 limit                                                                       | 39 per phase  | 1             | -           |
| Voltage interruption        | Urms (10ms) < adj. limit for t>3s                                                                | 1 per phase   | 1 per phase   | -           |
| Voltage dips total          | Urms (10ms) <adj. for="" limit="" t<3s<="" td=""><td>1 per phase</td><td>-</td><td>-</td></adj.> | 1 per phase   | -             | -           |
| Voltage dips classified     | to NRS048-2                                                                                      | 5 per phase   | -             | -           |
| Voltage swells              | Urms (10ms) > adjustable limit                                                                   | 1 per phase   | -             | -           |

## Day values saved at 24:00 for the expired day

(95%-Extremes = values which were not exceeded for 95% time during previous day)

- Voltage 95%-maximum [% of Unom]
- Voltage 95%-minimum [% of Unom]
- N-PE Voltage 95%-maximum [% of Unom]
- Unbalance 95%-maximum [%]
- Flicker 95%-maximum [-]
- THD<sub>U</sub> 95%-maximum [% of Unom]
- Harmonics U<sub>H2</sub> .. U<sub>H40</sub> 95%-maximum [% of Unom]
- Counts of voltage dips
- Counts of voltage swells
- Counts of voltage interruptions

### Current / Power maxima \*) (= highest measured values since last reset)

- Current maximum IL1(1sec) [Arms]
- Current maximum IL2(1sec) [Arms]
- Current maximum IL3(1sec) [Arms]
- Active power maximum PΣ (1sec) [W]
- Reactive power maximum QΣ (1sec) [var]
- Apparent power maximum SΣ (1sec) [VA]

### Energy meters\*) (= accumulated values since last reset)

- Active energy WP [Wh]
- Reactive energy WQ [varh]

COSHIPANATE BALER

MAVOLOG 10 Page 18 Version 13.09.2001

<sup>\*)</sup> on MAVOLOG 10S models only

• **Signal type:** Relay contact (max. 50V, 0.5A)

idle state programmable (normally closed or normally open)

• Alarm trigger: Each "Event" (OR function)

• Alarm reset: - "manually" by remote command

or

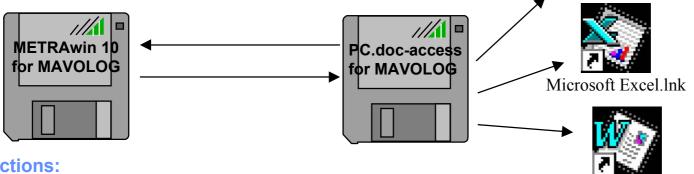
- automatically after xx seconds ( $xx = 1 \dots 65 534 s$ )

Application: Active Event Message to fax machine or mobile phone

Several dial-up modems (like MAVOLOG DFÜ) offer a binary input for self-dialing and messaging. When the MAVOLOG Event Alarm activates this input, then the modem will dial to a pre-defined phone number and send a pre-programmed SMS like "Mains Event in location XYZ".



MAVOLOG 10 Page 19 Version 13.09.2001


## **The Software Components**







Microsoft Access.lnk



#### **Functions:**

- Remote setup of MAVOLOG
- Read-out of MAVOLOG setup
- Memory intialisation
- Read-out of stored data
- Visualisation and printing of statistical data (daily or total)
- Graphical presentation and printing of interval data
- Listing and printing of event data
- Graphical presentation and printing of event signals
- Graphical presentation and printing of harmonics data
- Online reading, visualisation and printing of up to 10 selectable quantities
- Data export to dBase file

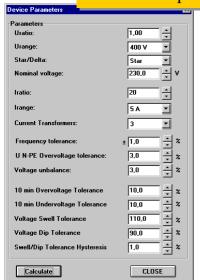
#### **Functions:**

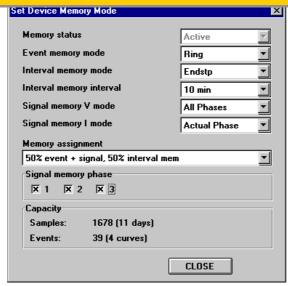
- Management of customer and system data
- Read-in of data from METRAwin 10 (scheduler controlled)

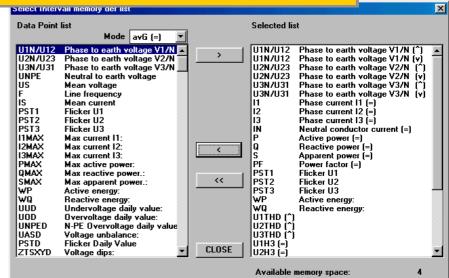
Microsoft Winword lnk

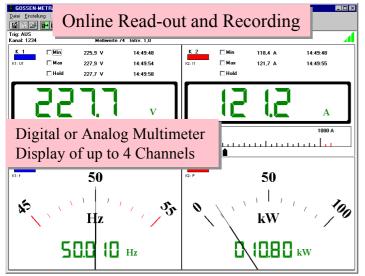
- Sorting of all customer/system data and measurement files
- Sorting of measured interval data
  - by ascending/descending values
  - by cumulative frequency distribution
- Evaluation of Min/Max/95% values
- Evaluation of data by certain limits
  - for time period (for statistical data)
  - for value range (for interval data)
- Protocol generation with pass/fail result under MS WORD
- Graphical presentation under MS EXCEL

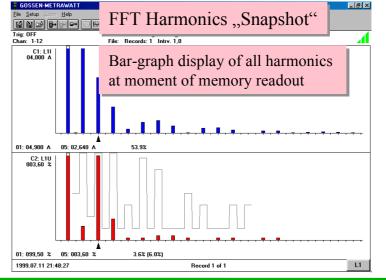



MAVOLOG 10 Page 21 Version 13.09.2001


## **METRAwin 10 for MAVOLOG 10**


## **Device Setup and Presentation of Data**


Author: GOSSEN-METRAWATT / VMS / HG


Device Setup Windows for Connection, Thresholds, Memory Mode and Interval Memory Parameters

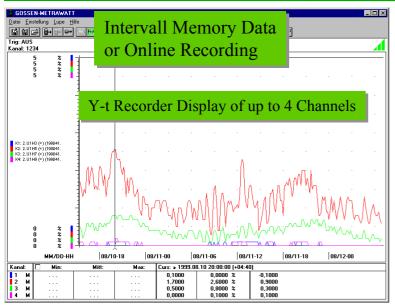


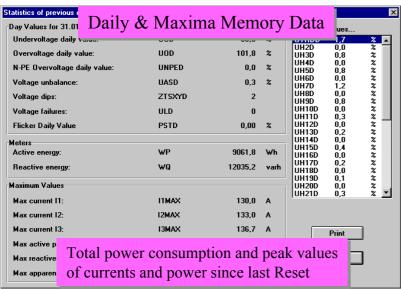




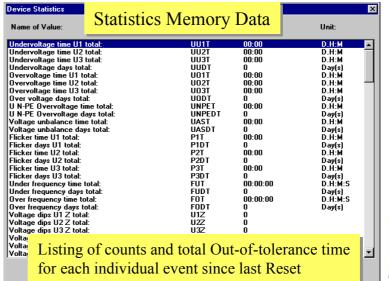








MAVOLOG 10 Page 22 Version 13.09.2001

# **METRAwin 10 for MAVOLOG 10**

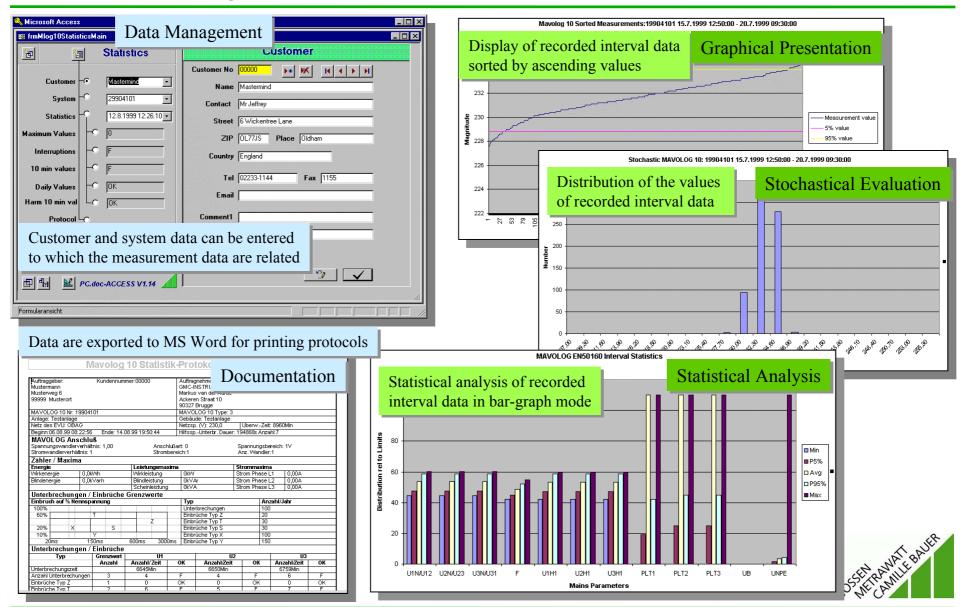

# **Presentation of Memory Data**

Author: GOSSEN-METRAWATT / VMS / HG



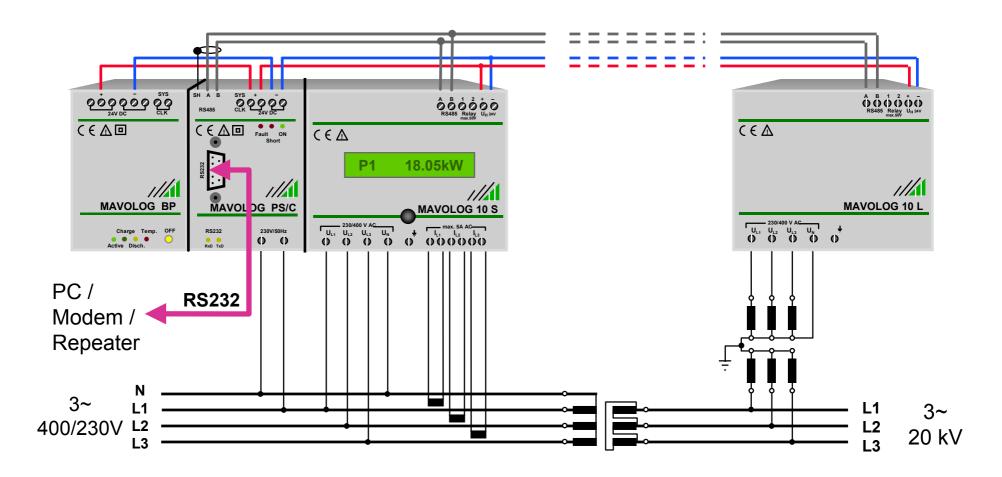








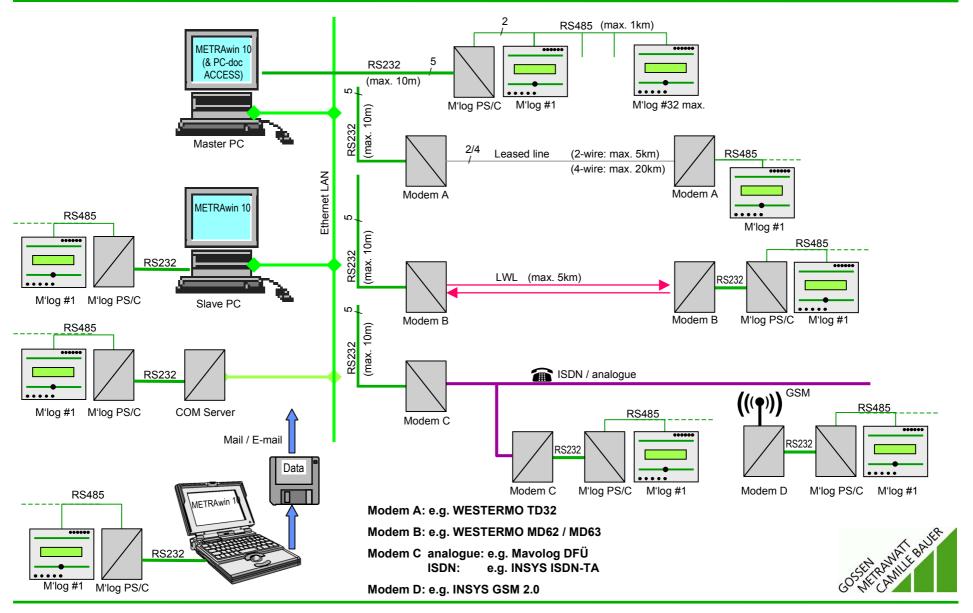

## PC.doc-ACCESS for MAVOLOG 10


## **Data Base & Analysis Software**

Author: GOSSEN-METRAWATT / VMS / HG



MAVOLOG 10 Page 24 Version 13.09.2001


# **Installation Example**





MAVOLOG 10 Page 25 Version 13.09.2001

# **Ways for Communication**



# MAVOLOG 10 Mobile-Set The Portable Version

The MAVOLOG 10 Mobile-Set consists of

- •MAVOLOG 10S+FFT/FSA Mains Analyzer
- •MAVOLOG PS/C
  Power Supply & Converter (RS485 ←→ RS232)
- ■MAVOLOG BP Battery Pack

mounted into a

•Carrying Case 37 cm x 15 cm x 30 cm

Included accessories:

- **Connection Cables** for
- mains supply,
- voltage measurement inputs incl. crocodile clips,
- RS232 interface
- Setup and Analysis

METRAwin 10 for Mavolog

Order No.: M830W



#### **Available Accessories**

- •**Z3514** Clip-on Current Transformer **2000A~/1A~** 30 Hz...1.5 kHz; 1%; hole diameter 150x64 mm
- •**Z3512** Clip-on Current Transformer **1000A~/1A~** 30 Hz ... 5 kHz; 1%; hole diameter 52 mm
- •WZ12D Clip-on Current Transformer 150A~/0,15A~ 45 Hz ... 500 Hz; 2.5%; hole diameter 15 mm







MAVOLOG 10 Page 27 Version 13.09.2001

# **MAVOLOG 10 Product Overview**

| Indication                 | Description                                                                                                                                                                                                                                                   | rder No.       |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| MAVOLOG 10L<br>+FFT/FSA    | 3-phase Mains Voltage Analyser with Harmonics and Flicker Analysis, incl. Installation Manual                                                                                                                                                                 | M830S          |
| MAVOLOG 10N<br>+FFT/FSA    | 3-phase Mains Voltage Analyser with Harmonics and Flicker Analysis and LC-Display, incl. Installation Manual                                                                                                                                                  | M830P          |
| MAVOLOG 10S<br>+FFT/FSA    | 3-phase Power and Mains Quality Analyser with Harmonics and Flicker Analysis, Power and Energy Measurement and LC-Display, incl. Installation Manual                                                                                                          | M830R          |
| MAVOLOG 10S                | 3-phase Power Analyser with Power and Energy Measurement and LC-Display, without Harmonics and Flicker Analysis, incl. Installation Manual                                                                                                                    | M830V          |
| MAVOLOG 10<br>Mobil-Set    | Portable 3-phase Power and Mains Quality Analyser consisting of MAVOLOG 10S+FFT/FSA, MAVOLOG PS/C, MAVOLOG BP mounted into rugged incl. Mains Cord, RS232 Cable, Voltage Test Leads with Crocodile Clips, METRAwin 10 Software; Software and Hardware Manuals | M830W<br>case; |
| MAVOLOG PS/C               | Power Supply Module 230Vac/24 Vdc and RS232/485 Converter for MAVOLOG 10                                                                                                                                                                                      | <b>Z863D</b>   |
| MAVOLOG BP                 | Battery Pack Module for Backup Supply of MAVOLOG 10                                                                                                                                                                                                           | Z863E          |
| CS232/485                  | Battery Powered RS232/485 Converter                                                                                                                                                                                                                           | Z863F          |
| MAVOLOG DFÜ                | PTT Dial Modem for Communication with MAVOLOG via Analog Phone Lines                                                                                                                                                                                          | Z864C          |
| METRAwin 10 for MAVOLOG 10 | Windows Software (GB/D) for Device Setup, Data Readout and Analysis                                                                                                                                                                                           | Z852D          |
|                            | Database Software (GB/D) based on MICROSOFT WORD, EXCEL and ACCESS for Data Management, Analysis and Documentation of MAVOLOG Systems                                                                                                                         | Z852F          |

MAVOLOG 10 Page 28 Version 13.09.2001